
Using the Theory of Functional Connections to
Solve the Restricted 3-Body Two-Point Boundary

Value Problem

Juliana Chew, Alex Koenig

May 2021

Contents
1 Problem Formulation: Restricted 3-Body Problem 2

2 Method: Theory of Functional Connections 2
2.1 Separating Constraints from Free Functions 3
2.2 Defining the Free Functions gi(t) 5

2.2.1 Discretization of z . 6
2.3 Defining the Loss Function L(Ξ) . 6
2.4 Performing Nonlinear Least-Squares Optimization 7

3 Results 7

4 Conclusion 15

Abstract

In this work, we set out to write a method to solve the restricted 3-body two-
point boundary value problem: given an initial location, final location, and time of
flight, we desire to compute a valid trajectory for the orbit. We rely on the Theory
of Functional Connections to split the motion into two classes of equations. The
former are fixed equations that satisfy the boundary conditions, and the latter are
free equations that are adapted via nonlinear least-squares optimization to best
fit the 3-body equations of motion. We then compare our results to a numerical
integrator to verify its success and highlight certain solution attributes.

1

1 Problem Formulation: Restricted 3-Body Problem
This section formulates the relevant equations of motion and details the system vari-
ables. In this project we focused on the Earth-Moon system, and used the non-dimensionalized
version of the problem where G = 1 and µ = Mmoon

Mmoon+MEarth
= 0.01215. The Earth

is located statically at (−µ,0,0), and the moon is located statically at (1 − µ,0,0). An
orbital period of the moon is exactly 2π.
Given our problem set-up, the equations of motion are as follows:

Fx = Ẍ1 − 2Ẋ2 −X1 +
(1− µ)(X1 + µ)

r31
+
µ(X1 − 1 + µ)

r32
= 0 (1)

Fy = Ẍ2 + 2Ẋ1 −X2 +
(1− µ)X2

r31
+
µX2

r32
= 0 (2)

Fz = Ẍ3 +
(1− µ)X3

r31
+
µX3

r32
= 0 (3)

Where r1 =
√

(X1 + µ)2 +X2
2 +X2

3 (the distance from the object to Earth) and
r2 =

√
(X1 − 1 + µ)2 +X2

2 +X2
3 (the distance from the object to the moon).

To find orbital trajectories that satisfy the boundary conditions, we have 4 variables of
interest:

1. ~X0, the initial position

2. ~Xf , the final position

3. t0, the initial time (at ~X0), set as 0 throughout the rest of this paper

4. tf , the final time (at ~Xf)

2 Method: Theory of Functional Connections
Several algorithmic methods to solve the 3-body two-point boundary value problem
(TPBVP) exist, but we downselected to TFC for its relatively high computational effi-
ciency, as demonstrated by Johnston et al (2021)1, where TFC was implemented specif-
ically for the Earth-Moon system.

The overarching strategy of the TFC method is to solve the 3-body equations of motion
given boundary value constraints by iterating over possible solutions until the orbit suf-
ficiently fits the equations of motion. First, in Section 2.1, the space of possible orbit
solutions is defined by specifying separate constraints and free functions — the con-
straints match the position boundary values and are therefore constant, whereas the free
function is adaptable in order to fit the equations of motion. Next, in Section 2.2, the
free functions are specified with a set of basis functions and corresponding coefficients;

1Johnston et al, Fast 2-impulse non-Keplerian orbit-transfer using the Theory of Functional Connections.
https://arxiv.org/abs/2102.11837

2

it is these coefficients which are iteratively refined via nonlinear least-squares optimiza-
tion to find a satisfactory orbit. In Section 2.3, the loss function for the equations of
motion is defined, which computes the generated orbit’s consistency with the equations
of motion to be used in the nonlinear least-squares optimizer. In Section 2.4, the non-
linear least-squares optimizer is described, which combines previous components to
solve for the orbit.

Figure 1: A diagram of our TFC procedure.

2.1 Separating Constraints from Free Functions
The Theory of Functional Connections performs functional interpolation given a set
of constraints. We build upon the definitions given by Johnston et al (2021)2 to create

2Johnston et al, Fast 2-impulse non-Keplerian orbit-transfer using the Theory of Functional Connections.
https://arxiv.org/abs/2102.11837

3

equations for object position in each axis as follows:

Xi(t, gi(t)) = gi(t) +

k∑
j=1

φj(t)ρj(t, gi(t)), (4)

whereXi defines the location of a body on the ith axis (X1 = x,X2 = y, andX3 = z),
and gi(t) is the free function for the ith axis. The k equations of φj(t) are switching
functions for the k given constraints (i.e. they are 1 at the constraint). Each gi(t) is a
free function which is iteratively altered within the nonlinear least squares solver. See
2.2 for more details. The ρj equations are the projection functionals that project gi(t)
onto the domain of functions that meet our constraints.

Similar to Johnston et al (2021)3, we define the projection functionals as follows:

ρ1(t, gi(t)) = Xi0 − gi(t0) (5)
ρ2(t, gi(t)) = Xif − gi(tf) (6)

Thus, we can rewrite our Xi as follows:

Xi(t, gi(t)) = gi(t) + φ1(t)(Xi0 − gi(t0)) + φ2(t)(Xif − gi(tf)) (7)

As we aim to fit our model to the equations of motion, we express our problem as
follows:

Fi(t,Xj , Ẋj , Ẍj) = 0 (8)
such that Xj(t0) = X0,j and Xj(tf) = Xf,j∀i, j ∈ {1, 2, 3}

Where Xj(t, gi(t)) is defined in equation 7 above.

Given we have 2 boundary points at t0 and tf , we thus define our switching functions
φj(t) as

φ1(t0) = 1 φ1(tf) = 0 φ2(tf) = 1 φ2(t0) = 0 (9)

Where each φj(t) can themselves be expressed as a linear combination of coefficients
αij :

φ1(t0) = 1 ∗ α11 + t0 ∗ α21 = 1 (10)

All other φi(t) in the equations above can be described similarly. We can express all
four equations using matrices:[

1 t0
1 tf

] [
α11 α12

α21 α22

]
=

[
1 0
0 1

]
(11)

3Johnston et al, Fast 2-impulse non-Keplerian orbit-transfer using the Theory of Functional Connections.
https://arxiv.org/abs/2102.11837

4

We can thus find all α parameters:[
α11 α12

α21 α22

]
=

[
tf

tf−t0
−t0

tf−t0
−1

tf−t0
1

tf−t0

]
(12)

By doing so, we can rewrite our switching functions as follows:

φ1(t) =
tf − t
tf − t0

φ2(t) =
t− t0
tf − t0

(13)

Setting t0 = 0 since we only care about ∆t = tf − t0, we can further simplify:

φ1(t) =
tf − t
tf

φ2(t) =
t

tf
(14)

When calculating Ẋi and Ẍi, we find that

φ̇1(t) = − 1

tf
φ̇2(t) =

1

tf
φ̈1(t) = 0 φ̈2(t) = 0 (15)

2.2 Defining the Free Functions gi(t)

To create scalar coefficients which describe the orbits, our free functions gi(t) can be
expressed as

gi(t) = hT ξi (16)

Where h ∈ Rm is the vector of basis functions (in this case, Chebyshev polynomials
of the first kind) defined in z-space such that z ∈ {−1, 1} and ξi ∈ Rm is the unknown
coefficient vector that we are solving for as specified earlier. Each ξi corresponds to
the ith component. For simplicity, we set m = 3, using only the first three Chebyshev
polynomials for the vector of basis functions, which means that our entire trajectory
is approximated as only a 2nd-order polynomial in each axis — this limitation is dis-
cussed further in Section 3 and 4. The Chebyshev polynomials we use are:

T (x) = 1 (17)
T (x) = x (18)

T (x) = 2x2 − 1 (19)

And therefore h is:

h = [1, x, 2x2 − 1] (20)

5

The z-space for h is separate from our t-space, where the following conversions can be
used to switch between the two:

z = z0 +
zf − z0
tf − t0

(t− t0) t = t0 +
tf − t0
zf − z0

(z − z0) (21)

Given that z0 = −1, zf = 1, and t0 = 0, we can further simplify to

z = −1 +
2

tf
(t) t =

tf
2

(z + 1) (22)

As shown in Johnston et al (2021)4, the derivatives of gi(t) can thus be written as

dngi
dtn

=
(dz
dt

)n dnhT
dzn

ξi (23)

where
dz

dt
=
zf − z0
tf − t0

=
2

tf

These derivatives are used for finding Ẋi and Ẍi using equation 4:

Ẋi(t, gi(t)) = ġi(t)− ġi(0)φ1(t)− X0i − gi(0)

tf

− φ2(t)ġi(tf) +
Xfi − gi(tf)

tf
(24)

Ẍi(t, gi(t)) = g̈i(t) +
ġi(0)

tf
− g̈i(0)φ1(t) +

ġi(0)

tf

− ġi(tf)

tf
− g̈i(tf)φ2(t)− ġi(tf)

tf
(25)

2.2.1 Discretization of z

To reduce error at the constrained boundary points, we discretized z (and thus, t) us-
ing the Chebyshev-Gauss-Lobatto nodes. When finding N+1 nodes, the discretization
scheme is as follows:

zk = − cos
kπ

N
for k = 0, 1, 2, ...N (26)

By finding z values this way, we are able to perform nonlinear least squares with a
higher resolution near the end points, thereby reducing error at the orbit boundaries.

2.3 Defining the Loss Function L(Ξ)

For given boundary values, the coefficients Ξ uniquely define an orbit (where Ξ is
the concatenation of ξ1, ξ2, and ξ3). The loss function uses the equations of motion

4Johnston et al, Fast 2-impulse non-Keplerian orbit-transfer using the Theory of Functional Connections.
https://arxiv.org/abs/2102.11837

6

expressed in terms of these coefficients Ξ — i.e., F̃i(t,Ξ) — to determine the consis-
tency of the orbit with the equations of motion. An orbit perfectly consistent with the
equations of motion will have a loss of 0; realistically, due to numerical imprecision,
approximation of the orbit via polynomials, and finite computational time, the loss will
be a locally minimized non-zero value.

The loss can only be calculated numerically at discretized points in time, so the overall
loss for the orbit is computed as a vector of the losses at n discretized time values
throughout the orbit.

L(Ξ) =
[
F̃1(t0,Ξ), ..., F̃1(ti,Ξ), ..., F̃1(tf ,Ξ),

F̃2(t0,Ξ), ..., F̃2(ti,Ξ), ..., F̃2(tf ,Ξ),

F̃3(t0,Ξ), ..., F̃3(ti,Ξ), ..., F̃3(tf ,Ξ)
]

(27)

2.4 Performing Nonlinear Least-Squares Optimization
The nonlinear least-squares optimizer starts with an initial guess of the orbit, Ξ0, and
iteratively updates the guess to reduce loss:

Ξk+1 = Ξk + ∆Ξ (28)

With ∆Ξ computed as:

∆Ξ = −(JT (Ξk)J(Ξk))−1JT (Ξk)L(Ξk) (29)

Where L(Ξ) is the loss function described in Section 2.3, and J(Ξ) is the Jacobian of
the loss. For this project, we did not define J(Ξ), nor did we specify the exact update
equation, but rather passed on the loss function and variables of interest to the built-
in SciPy nonlinear least-squares optimizer which handles the numerical updates on its
own.

For our initial guess of the orbit, we simply used Ξ0 = ~0 (i.e., a vector of 0s of the
length of Ξ, in our case, 9). This guess represents a linear trajectory from the initial
to final location. A better initial guess would allow faster runtime, but we found this
guess to be sufficient to find a solution in all explored cases.

3 Results
To analyze results, we chose a few particular orbits that highlight certain attributes of
the solver. After finding a particular solution, we extracted the initial velocity from the
trajectory and used that within a 3-body numerical integrator to assess the validity of
the initial conditions that our method generated.

7

The orbits we discuss in the examples below are outlined here:

Orbit # tf ~X0
~Xf (TFC) ~Xf (Integration)

1 3.45 (1.15, 0, 0) (0, -1.15, 0) (0.904, 0.057, 0)
2 2 (5, 0, 0) (3, -3, 0) (5.28, -6.19, 0)
3 1.5 (0, -0.8, 0) (0, 0.8, 0) (0.484, 1.588, 0)
4 1.8 (0, -0.8, 2) (0, 0.8, 1) (1.057, -1.250, 0.586)

Figure 2: Orbit 1. The top two scenes show the TFC solution within the synodic frame
(left) and inertial frame (right). The bottom computes the trajectories via numerical
integration from the initial state output by the TFC solver. The trajectories match ini-
tially but then quickly diverge; the TFC-computed trajectory escapes lunar influence
entirely, whereas numerical integration suggests that the initial conditions provided by
TFC actually cause the body to roughly stay in orbit around the moon.

8

Figure 3: Orbit 1 equation of motion residuals. The high initial residuals at the be-
ginning of the trajectory suggest that the initial velocity and acceleration described by
the TFC-derived orbit are not an ideal fit, which helps explain the discrepancy between
the TFC-derived orbit and the numerically integrated orbit. Even if the residuals are
0 throughout the rest of the orbit, if the residuals at the start of the orbit are non-zero,
the initial velocity estimate will be wrong, and so the TFC solution will not match
numerical integration.

9

Figure 4: Orbit 2, TFC (top) and integration (bottom). The actual shapes of the orbits
match relatively strongly, but the numerically-integrated orbit extends out to a further
distance away from the system’s center of mass. Since the orbiting body starts far away
from the Earth-moon system and thus has near-0 total energy, small errors in the initial
velocity result in relatively large position changes.

10

Figure 5: Orbit 2 equation of motion residuals. Although the average residual is close
to 0, as desired, there is a consistent upward trend which suggests the orbit solution
is non-ideal. As in orbit 1, the residuals at t0 are particularly extreme, worsening the
initial velocity estimate.

11

Figure 6: Orbit 3, TFC (top) and integration (bottom). Here, the constraint of the orbit
as a quadratic in each dimension clearly constrains the accuracy it can achieve, since
the actual orbital shape is rather convoluted due to 3-body effects. Better performance
would be expected with a higher-order or piecewise polynomial.

12

Figure 7: Orbit 3 equation of motion residuals. The residuals average to 0 for the Y
axis but not for the X axis.

13

Figure 8: Orbit 4, TFC (top) and integration (bottom). The orbits share similar shapes
but vary in orientation, as they appear to be rotated with respect to each other.

14

Figure 9: Orbit 4 equation of motion residuals. The residuals are large at the boundaries
and relatively small in between.

4 Conclusion
Overall, the performance of our TFC-based method is mixed, and is highly dependent
on the selected boundary conditions. Where the actual resulting orbit takes on a more
convoluted shape, the TFC solution is generally less accurate because its orbit is only
able to be described by a 2nd-order polynomial in each dimension. The TFC solution
works better for smoother orbits that are located further away from regions where 3-
body effects are dominant (i.e., near the moon and its Lagrange points). Noteworthily,
the residuals of the equations of motion tend to be high at the boundaries and low in
between; ideally, if anything, the reverse would be true, so that the velocities at the start
and end of the orbit are estimated more precisely.

We have several ideas to improve performance. For one, we could use piecewise
quadratic approximation, using unique Ξs between time increments to better fit the
equations of motion — this would allow for a closer fit of the trajectory to the actual
trajectory, and would enable the solver to achieve lower residuals overall. Since we
currently use a single Ξ for the entire trajectory, TFC’s output is only a 2nd-order poly-
nomial in each axis across the entire trajectory. This limitation is tolerable in certain
conditions where the real orbit solution is smooth in nature, but as shown previously, it
does affect the general trajectory shape particularly where 3-body effects are dominant.
(It is also worthwhile to note that elliptical orbits cannot feasibly be approximated as
quadratics, whereas they could be approximated as piecewise quadratics).

Another possibility is to increase the number of basis functions used in the vector of ba-
sis functions, h, and correspondingly increase the number of unknown coefficients Ξ.
This could be done instead of or in tandem with using piecewise functions to describe
the trajectory. If we added nmore basis functions, the trajectory could be approximated
as a (2 + n)th-order polynomial rather than a quadratic. This strategy is less desirable

15

than the piecewise approach because higher-order polynomials will have worse veloc-
ity errors at the boundaries, which will negatively impact the estimate of the initial
velocity.

16

TPBVP_TFCSolver

May 19, 2021

0.0.1 Imports

[1]: import numpy as np
import scipy.optimize
import matplotlib.pyplot as plt
import plotly.graph_objects as go
from plotly.subplots import make_subplots

0.0.2 Set boundary conditions

[2]: global mu
mu = 0.01215

global X0
global Xf
global tf

X0 = np.array([1.15,0,0])
Xf = np.array([0,-1.15,0])
tf = 3.45

0.0.3 Definitions for g & derivatives

[3]: def g(i,t,Xi):
h = np.array([1,2*t/tf - 1,2*(2*t/tf - 1)**2 - 1])
xi = Xi[i:i+3]

return np.dot(h,xi)

def gdot(i,t,Xi):
h = np.array([0,2/tf,2/tf*(8*t/tf-4)])
xi = Xi[i:i+3]

return np.dot(h,xi)

1

def gddot(i,t,Xi):
h = np.array([0,0,16/tf**2])
xi = Xi[i:i+3]

return np.dot(h,xi)

0.0.4 Definitions for X & derivatives

[4]: def X(i,t,Xi):
return g(i,t,Xi) + (1-t/tf)*(X0[i] - g(i,0,Xi)) + (t/tf)*(Xf[i] -␣

↪→g(i,tf,Xi))

def Xdot(i,t,Xi):
#return gdot(i,t,Xi) + (1-t/tf)*(-gdot(i,0,Xi)) + (X0[i] - g(i,0,Xi))*(-1/

↪→tf) + (t/tf)*(-gdot(i,tf,Xi)) + (Xf[i] - g(i,tf,Xi))*(1/tf)
return gdot(i,t,Xi) - gdot(i,0,Xi)*(1-t/tf) - (X(i,0,Xi) - g(i,0,Xi))/tf -␣

↪→(t/tf)*gdot(i,tf,Xi) + (X(i,tf,Xi)-g(i,tf,Xi))/tf

def Xddot(i,t,Xi):
return gddot(i,t,Xi) + 2*gdot(i,0,Xi)/tf + (1-t/tf)*(-gddot(i,0,Xi)) -␣

↪→gdot(i,tf,Xi)*2/tf + (t/tf)*(-gddot(i,tf,Xi))

[5]: def r(i,t,Xi):
if i==1:

return ((X(0,t,Xi)+mu)**2 + X(1,t,Xi)**2 + X(2,t,Xi)**3)**0.5
if i==2:

return ((X(0,t,Xi)-1+mu)**2 + X(1,t,Xi)**2 + X(2,t,Xi)**3)**0.5

0.0.5 Equations of Motion

[6]: def F(i,t,Xi):
if i==1:

x1ddot = Xddot(0,t,Xi)
x2dot = Xdot(1,t,Xi)
x1 = X(0,t,Xi)
r1 = r(1,t,Xi)
r2 = r(2,t,Xi)

return x1ddot - 2*x2dot - x1 + (1-mu)*(x1+mu)/r1**3 + mu*(x1-1+mu)/r2**3

if i==2:
x2ddot = Xddot(1,t,Xi)
x1dot = Xdot(0,t,Xi)
x2 = X(1,t,Xi)

2

r1 = r(1,t,Xi)
r2 = r(2,t,Xi)

return x2ddot + 2*x1dot - x2 + (1-mu)*x2/r1**3 + mu*x2/r2**3

if i==3:
x3ddot = Xddot(2,t,Xi)
x3 = X(2,t,Xi)
r1 = r(1,t,Xi)
r2 = r(2,t,Xi)

return x3ddot + (1-mu)*x3/r1**3 + mu*x3/r2**3

0.0.6 Loss function

[7]: def Loss(Xi):
loss = []
n = 100
for i in range(n):

t = tf*i/(n-1)
loss.append(F(1,t,Xi))

for i in range(n):
t = tf*i/(n-1)
loss.append(F(2,t,Xi))

for i in range(n):
t = tf*i/(n-1)
loss.append(F(3,t,Xi))

return np.asarray(loss)

0.0.7 Run the solver on an initial guess

[8]: guess = np.array([0,0,0,0,0,0,0,0,0])
result = scipy.optimize.least_squares(Loss,guess)
Xi = result.x

0.0.8 Plot the resulting orbit

[9]: def plot(Xi,flattenZ=True):
def rotate_vector(vec, axis, angle_deg):

proj = np.dot(vec, axis)*axis
return proj + np.cos(angle_deg*np.pi/180)*(vec - proj) + np.

↪→sin(angle_deg*np.pi/180)*np.cross(vec,axis)

3

rs = [rotate_vector(np.array([X(0,t,Xi),X(1,t,Xi),X(2,t,Xi)]),np.
↪→array([0,0,1]),57.3*t) for t in np.linspace(0,tf,100)]

xsi = [r[0] for r in rs]
ysi = [r[1] for r in rs]
zsi = [r[2] for r in rs]
rsE = [rotate_vector(np.array([-mu,0,0]),np.array([0,0,1]),57.3*t) for t in␣

↪→np.linspace(0,tf,100)]
xsEi = [r[0] for r in rsE]
ysEi = [r[1] for r in rsE]
zsEi = [r[2] for r in rsE]
rsM = [rotate_vector(np.array([1-mu,0,0]),np.array([0,0,1]),57.3*t) for t␣

↪→in np.linspace(0,tf,100)]
xsMi = [r[0] for r in rsM]
ysMi = [r[1] for r in rsM]
zsMi = [r[2] for r in rsM]

xs = [X(0,t,Xi) for t in np.linspace(0,tf,100)]
ys = [X(1,t,Xi) for t in np.linspace(0,tf,100)]
zs = [X(2,t,Xi) for t in np.linspace(0,tf,100)]
xsE,ysE,zsE = [-mu],[0],[0]
xsM,ysM,zsM = [1-mu],[0],[0]

if flattenZ:
zs = [0 for t in np.linspace(0,tf,100)]
zsi = [0 for t in np.linspace(0,tf,100)]

fig = make_subplots(rows=1, cols=2, specs=[[{'type': 'scene'}, {'type':␣
↪→'scene'}]], subplot_titles=("Synodic Frame", "Inertial Frame"))

fig.add_trace(
go.Scatter3d(x=xsEi, y=ysEi,␣

↪→z=zsEi,mode='lines',marker=dict(color='blue'),line=dict(width=15),name='Earth'),
row=1, col=2)

fig.add_trace(
go.Scatter3d(x=xsMi, y=ysMi,␣

↪→z=zsMi,mode='lines',marker=dict(color='gray'),line=dict(width=10),name='Moon'),
row=1, col=2)

fig.add_trace(
go.Scatter3d(x=xsi, y=ysi,␣

↪→z=zsi,mode='lines',marker=dict(color='gray'),name='Orbit'),
row=1, col=2)

fig.add_trace(
go.Scatter3d(x=xsE, y=ysE,␣

↪→z=zsE,mode='markers',marker=dict(color='blue',size=10),name='Earth'),
row=1, col=1)

fig.add_trace(

4

go.Scatter3d(x=xsM, y=ysM,␣
↪→z=zsM,mode='markers',marker=dict(color='gray'),name='Moon'),

row=1, col=1)
fig.add_trace(

go.Scatter3d(x=xs, y=ys,␣
↪→z=zs,mode='lines',marker=dict(color='gray'),name='Orbit'),

row=1, col=1)
#fig.write_html('orbit.html', auto_open=True)
fig.show()

[10]: plot(Xi,flattenZ=True)

5

