
Lab 5 Report: Localization

Team 14

Nick Bonaker
Juliana Chew
Alex Koenig
Kai Maier
John Paris

RSS

April 17, 2021

Contents

1 Introduction (Alex) 2

2 Technical Approach 3
2.1 Motion Model (Kai) . 3
2.2 Sensor Model (Juliana) . 4
2.3 Particle Filter (Alex) . 9

3 Experimental Evaluation 12
3.1 Simulation Method (Nick) . 12
3.2 Tuning the Particle Filter (Nick) 12

3.2.1 Sensor Model: Flattening Coefficient (Juliana) 12
3.2.2 Motion Model: Internal Noise Coefficient (Nick) 14

3.3 2D Evaluation (Nick) . 15
3.4 3D (TESSE) Evaluation (Alex) 16

4 Conclusion (John) 18

5 Lessons Learned 18

1

1 Introduction (Alex)

Previously, our team enabled a TESSE-simulated car to navigate using visible
landmarks including walls, lanes, and cones. In this framework, the car had
no knowledge of its position within the world, but rather located the relative
positions of objects of interest and followed specified control laws to navigate
based on these landmarks. To enable more versatile navigation capabilities – for
example, the ability to drive from any arbitrary origin to any destination – the
car must first derive its absolute position within the world using a localization
algorithm, and then construct a valid route via a motion planning algorithm.

We implement a Monte Carlo localization algorithm to determine the car’s lo-
cation within a known world map, which is the first step towards broader au-
tonomous navigation abilities. Monte Carlo localization is an iterative particle
filter process designed to be robust against measurement noise. The key method
of Monte Carlo Localization is to randomly sample the distribution of possible
car poses (represented by particles) and then update the particle distribution via
Bayesian inference. The prior is the particle distribution from the previous time
step recomputed based on proprioceptive odometry measurements, the evidence
is the car’s exteroceptive LiDAR measurements, and the posterior is the new
particle distribution. For a more mechanical rather than statistical intuition of
this process: at every new time step, the particles are first moved corresponding
to the vehicle odometry via a motion model, and then are resampled based on an
assessed likelihood of their accuracy by comparing vehicle sensor measurements
to the known world map, as per a LiDAR sensor model.

The objective of this lab is to first implement and refine the particle filter (com-
prised of the motion and sensor model implementation) to enable localization
in a simpler 2D environment, and then to adapt the solution to work in the 3D
TESSE environment, where it is to be further refined to achieve low localization
error and a high rate of convergence. Beginning with an implementation in a
simpler environment serves as a stepping stone so that we can more efficiently
test whether the key concepts in our implementation are functional before in-
creasing simulation difficulty.

2

2 Technical Approach

The technical approach is split into several parts: (1) implementation of the mo-
tion model, which involves computing the geometrical updates of each particle
pose based on measured vehicle odometry at each time step, (2) implementation
of the sensor model, which involves computing LiDAR observation probability
by comparing the observation to ground truth, and (3) combining each model
into an overall particle filter which was implemented in ROS. In each section we
test and iterate on the model parameters to enhance the accuracy, robustness
to noise, and rate of convergence of the localization algorithm.

2.1 Motion Model (Kai)

Inputs The motion model receives a set of two different inputs: raw odometry
particles and an odometry transformation matrix. The raw odometry particles
are input as an array containing N poses. Each of these poses are defined by a
3x1 array:

X =

[
x
y
θ

]
=

[
p
θ

]
(1)

For each of these poses, we take the pose orientation θ and generate the rotation
matrix for the particle which has the form:

R =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(2)

The odometry transformation matrix is similarly input as a 3x1 matrix arranged
the same as above. Utilizing these inputs, we generate a new array of N poses
which represent the projected positions of the inputted particles. We achieve
this through the implementation of a rigid body transformation algorithm.

Rigid Body Transformation The motion model takes in raw odometry
particles, including the noise, and transforms it into a set of projected particles.

3

Figure 1: Example set-up showing how rigid body transformation works. In
this diagram, W coordinate system represents the ’world’ coordinate origin from
which the poses for r1 and r2 can be defined. r1 represents the coordinate system
of the current pose, and r2 represents the projected pose.

To project the raw odometry particles we preform a rigid body transformation
defined by the equation:

pWr2 = RWr1p
r1
r2 + pWr1 (3)

θWr2 = θr1r2 + θWr1 (4)

In this equation pWr2 and θWr2 define the pose of the projected particle, pWr1 and
θWr1 define the pose input by the raw odometry, and pr1r2 and θr1r2 come from the
transformation matrix which is also provided by odometry.

After undergoing rigid-body transformation, the projected odometry points are
then input into the sensor model, which mitigates the noise from the odometry
data and attaches a probability to each point based off the ground truth.

Noise for 2D In order to properly synthesize realistic odometry data for
testing in RVIZ, noise is added to the motion model to add uncertainty for the
sensor model and prevent it from converging towards a local (rather than global)
maximum.

2.2 Sensor Model (Juliana)

The sensor model takes the Motion Model’s particles as input and determines
the value P (zk|xk,m), the likelihood of the particle with measurement zk given
the ground truth observations xk and map m. These likelihoods are fed into
the Particle Filter so that particles with lower likelihoods are pruned.

4

The Look-up Table An efficient run time is essential for real-time localiza-
tion. As the sensor model involves a great number of calculations for all particle
rays, we reduce computational costs by discretizing distance and precomputing
a likelihood table. This table considers all possible combinations of ground truth

d and measured distances z
(i)
k up to a specified maximum range zmax, as for-

matted in Figure 2. By doing so, the sensor model need only “look up” values
for each particle ray.

Figure 2: The format of the look-up table of probabilities, where (in this case)

the maximum range zmax = 3 . The “X” is P (z
(i)
k = 2|x(i)k = 1,m). Each

column is normalized to sum to 1.

This look-up table is discretized into pixels — not meters. To scale measure-
ments and ground truth distances to pixels, we use the following conversion:

dpx =
dm
ζλ

(5)

Where dpx and dm is the given distance in pixels and meters, respectively. The
constants ζ and λ are the map resolution (in meters per pixel) and the ratio of
the LiDAR scale to the map scale. The values ζ and λ are given because they
are constants particular to the map and TESSE. In the 2D simulation, λ = 1
and ζ = 0.05; in TESSE, λ = 5 and ζ = 0.0967.

The sensor model performs ray tracing to produce the LiDAR measurements
that the robot would have if it were oriented at each particle. From there,
the sensor model evaluates the mismatch between these measurements and the
ground truth observations to determine the particle’s likelihood.

5

Figure 3: An example of a proposed particle’s measurement as compared to
ground truth observations. For each ray, the sensor model compares the ground

truth distance d to the measurement’s ray z
(i)
k to calculate a probability for

each ray (denoted as P (z
(i)
k |x

(i)
k = d,m)). There is a high mismatch in the

figure above, so the particle is assigned a low overall likelihood.

Calculating Likelihoods Each probability P (z
(i)
k |x

(i)
k = d,m) is defined as

the weighted sum as follows:

P (z
(i)
k |x

(i)
k ,m) = αhitPhit(z

(i)
k |x

(i)
k ,m)

+ αshortPshort(z
(i)
k |x

(i)
k ,m) (6)

+ αmaxPmax(z
(i)
k |x

(i)
k ,m)

+ αrandPrand(z
(i)
k |x

(i)
k ,m)

Such that

αhit + αshort + αmax + αrand = 1 (7)

Where

• Phit(z
(i)
k |x

(i)
k = d,m) is the probability of detecting a known map obstacle.

• Pshort(z
(i)
k |x

(i)
k = d,m) is the probability of a short measurement, often

caused by internal reflections, reflections with the robot, or unexpected
obstacles.

6

• Pmax(z
(i)
k |x

(i)
k = d,m) is the probability of a large (or missed) measure-

ment. These instances often occur due to unexpected reflecting properties,
and the LiDAR instrument does not receive feedback.

• Prand(z
(i)
k |x

(i)
k = d,m) is the probability of a random measurement.

• αX is the weight for the probability PX(z
(i)
k |x

(i)
k = d,m).

All αX values are tunable parameters. However, we found that differing values
of α did not strongly affect performance. Therefore, we opt to keep all α weights
to the initial given values stated below.

αhit = 0.74 (8)

αshort = 0.07 (9)

αmax = 0.07 (10)

αrand = 0.12 (11)

The probability Phit is defined as a Gaussian centered on the ground truth
distance d, where σ = 0.5m. With this design, greater agreement between the

measurement z
(i)
k and d lead to greater likelihoods:

Phit(z
(i)
k |x

(i)
k = d,m) =

{
1√

2πσ2
exp− (z

(i)
k −d)

2

2σ2 if 0 ≤ z(i)k ≤ zmax
0 otherwise

(12)

Unlike Phit, Pshort is defined as a linear equation, where higher probabilities are

located closer to z
(i)
k = 0 (i.e. closer to the car).

Pshort(z
(i)
k |x

(i)
k = d,m) =

{
2
d (1− z

(i)
k

d) if 0 ≤ z(i)k ≤ d
0 otherwise

(13)

The probability Pmax represents the probability of a long or missed measure-
ment. Given a set maximum range zmax, the only time this type of measurement

occurs is when z
(i)
k = zmax. In essence, this creates a δ function centered at

zmax. We therefore define Pmax as follows:

Pmax(z
(i)
k |x

(i)
k = d,m) =

{
1 if z

(i)
k = zmax

0 otherwise
(14)

We also model random measurements Prand as a uniform distribution over all
distances in the table.

Prand(z
(i)
k |x

(i)
k = d,m) =

{
1

zmax
if 0 ≤ z(i)k ≤ zmax

0 otherwise
(15)

7

After finding the likelihood P (z
(i)
k |x

(i)
k = d,m) for each ray, we calculate the

likelihood of the particle as follows:

P (zk|xk,m) =

n∏
i=1

P (z
(i)
k |x

(i)
k ,m) (16)

From the equation above, we consider the entirety of the particle’s scan. The
probability for each particle is then handed to the Particle Filter for resampling.

Flattening the Distribution After precomputing the look-up table, we per-
form flattening on the probability distributions.

Figure 4: A visualization of flattening. Peaks are smoothed over, and likelihoods
are more evenly distributed.

As the particle filter resamples particles by their assigned likelihoods, a more
even likelihood distribution allows particles with lower probabilities to not be
pruned as prematurely and encourages exploration with more particles in sub-
sequent time steps.

Flattening is defined as follows:

Pf (zk|xk,m) = P (zk|xk = d,m)
1
β (17)

Where β is the flattening parameter, P (zk|xk,m) is a given probability in the
original table, and Pf (zk|xk,m) is the new flattened probability.

We tune the particle filter with varying β values, choosing β = 2.5. For more
information on our tuning strategies and results, refer to section 3.2.1.

8

Our final probability distribution after tuning can be represented in the 3D plot
below:

Figure 5: The 3-dimensional representation of the sensor model’s look-up table

for all combinations of ground truth distance d and measured ray distance z
(i)
k

in pixels. Gaussian-like peaks are centered on d, and barriers at z
(i)
k = 200

model missed measurement probabilities.

2.3 Particle Filter (Alex)

The particle filter combines the motion model and sensor model into a single
process that is repeated at each time step in the simulator. The essence of the
process is Bayesian inference which updates the prior pose belief xk based on
new odometry measurements uk and sensor measurements zk. Mathematically,
the Bayesian inference procedure is as follows:
The prediction step:

p(xk|u1:k, z1:k−1) =

∫
p(xk|xk−1, uk)p(xk−1|u1:k−1, z1:k−1)dxk−1 (18)

The update step, where α is a constant:

p(xk|u1:k, z1:k) = αp(zk|xk)p(xk|u1:k, z1:k−1) (19)

Computing these values analytically is intractable in general. To model this
process in a computable manner, we use Monte Carlo random sampling: we
take random samples (particles) from the prior belief, and compute the updates
for each particle individually so as to get an approximate representation of the
posterior distribution. Figure 6 outlines the steps in this process:

• First, the initial belief—comprised of particles sampled from a probability
distribution representing our knowledge of the vehicle’s pose—is updated
with odometry via the motion model. This step contributes noise because
odometry measurements are inherently noisy, and therefore it degrades our

9

knowledge of the vehicle’s pose. In this step we even add more noise on
top of the measurement noise so as to prevent the belief distribution from
being stuck at a local maximum. Say, for example, the vehicle believes
itself to be on one street but it is actually on a different street. The
believed street is a local maximum in the sensor model likelihood, and
the way to escape it is by adding noise such that some particles end up
on the correct street (the global maximum), where the distribution will
eventually converge.

• Second, the sensor measurements (represented at each particle pose) are
compared against the world map via the sensor model to determine the
likelihood the particle pose is the vehicle’s pose. Although sensor mea-
surements are inherently noisy as well, this step tends to reduce error
because it provides evidence sampled directly from the ground truth (the
LiDAR measurements are from the car’s exact location, not the individual
particle locations).

• Finally, the particles are resampled from this new posterior probability
distribution. This step is necessary to take into account the updated
particle likelihoods.

10

Figure 6: The Particle Filter represented as a Bayesian inference process. This
process is iterative, so the last step serves as the starting point for the process
in the next time step. The odometry step tends to increase error, whereas the
sensing and resampling steps tend to reduce it.

11

3 Experimental Evaluation

3.1 Simulation Method (Nick)

We develop a simulation framework to evaluate the performance of our par-
ticle filter in a consistent manner. This framework allows us to tune various
parameters of the particle filter and increase its performance.

To build this framework, we first recorded rosbags of the racecar simulator as
we drove the car around the map. These rosbags provided consistent odometry
and LiDAR data which we fed as input to our particle filter. We then wrote a
suite of bash scripts to manage the setup and execution of our particle filter with
the bagged data. These scripts accept a parameter file that passes parameter
values (flatten or noise coefficient, for instance) to the particle filter for testing.
After running the particle filter on the bagged data, the suite exports both the
particle filter’s pose predictions and the ground-truth poses to a csv file. We
then analyzed this csv file to construct the plots used for tuning in this section.

3.2 Tuning the Particle Filter (Nick)

We use our simulation framework to tune the major parameters in both the
sensor model and the motion model of the particle filter. We investigate the
effect of varying the flattening coefficient of the sensor model in section 3.2.1
and the effect of varying the internal noise coefficient of the motion model in
section 3.2.2.

3.2.1 Sensor Model: Flattening Coefficient (Juliana)

Tuning the flattening parameter β is important in encouraging particle explo-
ration in our localization algorithm. A higher β “squashes” abrupt particle
peaks more than lower β. This “squashing” effect distributes likelihoods more
evenly across particles and allows more particles to survive in later time steps.
For more information, refer to section 2.2.

The figure below shows our particle filter’s performance with different β values.

12

Figure 7: The particle filter performance in the 2D simulation with varying
flatten exponent denominators. Performance is measured as root-mean-square
error in position and orientation.

Indeed, the figure above demonstrates that flattening increases the particle fil-
ter’s performance to a certain extent. When there is no flattening (β = 1), the
particle filter’s error is higher as the particle filter eliminates particles prema-
turely. Having too high of a β increases the filter’s error as well, because the
particle filter eliminates too few particles, including those that are far off from
the ground truth pose.

From the figure above, the lowest error in position and orientation occurs when
β ∈ [2.25, 2.75]. However, the orientation and position error varies in oppo-
site directions within this β range. To compromise between the two, we chose
β = 2.5. This design choice yields a root-mean-square position error of approx-

13

imately 3.6 degrees and orientation error of about 0.21 meters, with a range of
about 2.2 degrees and 0.45 meters. With a high accuracy and relatively high
precision, our particle filter appears to perform quite well with β = 2.5.

3.2.2 Motion Model: Internal Noise Coefficient (Nick)

The particle filter relies on randomness to explore the state space of possible
poses. By injecting artificial noise into the motion model, we can control how
much the particles spread out. The internal noise coefficient controls the stan-
dard deviation of the Gaussian noise added into the motion model. Too little
noise, and the particles will remain clumped together and can miss potentially
better pose estimates. Too much noise, and the particles will spread out and
not converge to an agreement. As evident in figure 8, our simulations showed
a noise level in the range of [0.04, 0.09] meters provided the lowest MSE pose
estimate. We chose a noise coefficient value of 0.05 meters for our motion model.

Figure 8: Effects of varying the internal noise coefficient of the motion model
on the particle filter performance. The noise coefficient controls how much the
particles spread out. If the noise is too low, the particles will remain clumped
together and potentially miss better pose estimates. If the noise is too high, the
particles will spread out and may not converge. Our simulations show a noise
level of around 0.05 m provided the lowest MSE pose estimate.

14

3.3 2D Evaluation (Nick)

Using these tuned flattening and internal noise coefficients in our particle filter,
we evaluated its performance with varying levels of odometry noise. In the
real world, the car will not know its exact velocity and pose at a given time –
we simulated this error by adding Gaussian noise of increasing variance to the
car’s odometry data. As evident in figure 9, the particle filter’s performance is
robust to noise with up to 2 whole meters of standard deviation. The location
predictions achieve a near constant root-mean-square-error of 0.22 meters (only
8 inches), and the orientation predictions a root MSE of 11 degrees.

With this level of precision and resiliency to noise in our 2D particle filter, our
car should have no problems with performing localization even for high-demand
tasks such as parallel parking in the crowded streets of Boston.

Figure 9: Performance of the tuned particle filter with varying degrees of odom-
etry noise. Our particle filter is quite accurate and extremely resilient to noise.
It achieves a near constant location root-MSE of 0.22 meters (only 8 inches)
and orientation root-MSE of 11 degrees.

15

3.4 3D (TESSE) Evaluation (Alex)

When implementing our code in the TESSE environment, we encountered nu-
merous technical bugs which slowed down the testing and improvement of our
code. Nevertheless, we were at least able to test our localization algorithm in
TESSE. Since we ran our tests within the staff-provided virtual desktop inter-
face (VDI), we drove the car by publishing drive messages to drive the car in
straight lines starting at a variety of locations within the map, and simultane-
ously ran the localization algorithm while bagging data from the run. The plots
below demonstrate the root-mean-square error of both the position estimate
and orientation estimate of the car from a particular representative run.

Figure 10: MCL-estimated pose error during a TESSE run.

In general, the orientation prediction is strongly correlated with ground truth,
never exceeding more than 10 degrees error, and on average obtaining a 3.7 de-

16

gree error. This result is highly acceptable. The location prediction is not quite
as accurate—it starts out within 1 meter of truth but ends up at roughly 5 me-
ters from it, and has an average error of 2.7 meters—and concerningly it appears
to diverge from the actual car location rather than converge upon it (which is
the anticipated behavior). We believe that the reason for this divergence is
likely due to some sort of as-of-yet undiscovered transformation bug within the
code. Based on our localization algorithm’s behavior in the 2D environment,
we expect that the localization is actually converging to a certain location, but
a faulty TESSE-implementation-related transformation pushes that prediction
roughly 5 meters away.

Assuming our issue is solely caused by an undetermined transformation prob-
lem, it takes roughly 10-15 seconds for the location prediction to converge, and
when it converges, the average variance is 0.25 meters. Some credence to this
speculation is derived from the fact that in the 2D environment, the average
post-convergence position error was 0.22 meters; if anything, the 3D environ-
ment is somewhat more complex and noisy, so we would expect a marginally
greater error. Further credence to this speculation is given by the RVIZ screen-
shots in Figure 11. These screenshots show that although the pose error is
consistently high (roughly 5 meters), the estimate is still highly constrained
and only has high error because the estimated position is consistently roughly
5 meters in front of the car itself, no matter the orientation.

Figure 11: MCL-estimated pose during a TESSE run. Blue markers are indi-
vidual particles, the red arrow is the estimated pose, and base link gt is the
car location (the red axis is the forward direction). In all scenarios, the pose is
consistently 5 meters in front of the car, but is otherwise accurate.

17

4 Conclusion (John)

This lab progressively walks through the creation of a Monte Carlo localiza-
tion algorithm. Implementing a Monte Carlo localization scheme will allow us
to more easily implement complex path planning algorithm in the future. By
keeping track of where we are, we allow ourselves to create planning algorithms
for obstacles we cannot see in the current time step, given map data.

In order to design this Monte Carlo localization system, we learn both how
to create a motion model that used odometry to predict where points in previ-
ous time steps should be in the future as well as a sensor model that indicated
the probability of LiDAR sensor data showing up in particular locations given
a ground truth location. The combination of the two models allows us to deter-
mine the probability of the car’s ground truth location given a series of LiDAR
data.

Our implementation of this Monte Carlo localization in a particle filter in 2D has
been measured to be quite accurate. However while we were able to implement
our code into TESSE, our 3D implementation of the particle filter could use
improvement. This can be seen by our root-mean-square error of ±2.7 meters.
With this error, the car can localize itself on a road (requires ∼ 3.7 meters), but
it cannot localize itself within a lane (requires ∼ 1.85 meters, or half a standard
lane width). We can improve the 3D system by ensuring that the particle filter
uses up-to-date LiDAR data and up-to-date position transforms to relate the
noisy TESSE LiDAR data to real-time map orientations.

5 Lessons Learned

Alex This lab strongly reinforced that I should never underestimate the in-
tegration step as part of the overall technical work. Combining two perfectly
working components does not guarantee a perfect whole, since a working so-
lution also relies on the successful interaction of those components; similarly,
just because a solution works in one environment does not entail that porting it
to another environment will be straightforward and trouble-free. Regarding CI
lessons, I felt our briefing was much more successful this lab because we placed a
greater emphasis on the holistic approach, context, and motivation for our work
rather than highly specific details about the particulars of our implementation.

Juliana I learned (quite quickly) that the integration step is one of the hardest
and most taxing parts of a collaborative project. We underestimated the time
it would take to run the working particle filter in TESSE, and many of us ran
into unique TESSE-related bugs that prevented us from integrating until the
last minute. If anything, it would have worked better if we budgeted more time
for this phase and also if we had asked our TAs for help earlier. Words cannot

18

describe how appreciative I am of the TAs’ responsive help in the odd hours of
the night!

John The largest lesson I learned is to ask for help on technical errors early. I
struggled a lot with a series of Tesse-ROS errors that could have been resolved
much sooner if I’d asked for help earlier. From a RSS theory standpoint I
felt that I got a very good understanding of the theory behind Monte Carlo
Localization and how to implement it.

Nick I primarily focused on the integration evaluation of the 2d particle filter
in this lab. I learned that time is the most valuable resource to a team, and
that earlier parts should be finished ASAP in case there are errors down the
line. Working to finish the 2d particle filter implementation earlier in the week
would have allowed more time to evaluate and tune it and the process would
have felt less time-crunched.

Kai While I primarily focused on the implementation of the motion model in
this lab, the team as a whole learned a great deal about the difficulties included
in meshing together the different parts of code. However I also learned through
the motion model that there are always more than one correct implementation
of the same equation. I struggled with making the matrix form of rigid-body
transformation work however when i transitioned to a different implementation
of the same algorithm it work perfectly. Additionally I am very excited about
the ability to use VDI since it enables me to finally help test the code in TESSE.

19

