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Abstract

We design a height detection deep learning algorithm
for Mars satellite terrain imagery via singular-perspective
satellite imagery. Existing methods currently in use in space
use stereo imaging, synthetic aperture radar, or laser inter-
ferometry, so a method using only one camera can enable
instantaneous and relatively low-SWaP terrain estimation.
This algorithm may be useful where (a) taking stereo im-
agery is not feasible (for example, when the spacecraft lo-
cation is static), and (b) where no existing height maps exist,
as would be the case for exploration of unfamiliar planetary
bodies.

We trained a UNet with the dataset generated by the
HiRISE imaging camera on the Mars Reconaissance Or-
biter, which has approximately 7000 stereo image pairs and
corresponding terrain maps. We used a UNet because of
its ability to retain both spatial context and features and
its encoder-decoder structure, skipping the traditional Soft-
Max layer to perform pixel-wise regression. Our model has
poor performance overall, generally producing highly flat
yet noisy height predictions regardless of the actual terrain.
However, its height predictions do somewhat correlate with
actual image features such as valleys and craters, and the
model sometimes fails in meaningful ways such as mistak-
ing craters for mounds and vice-versa.

1. Introduction
The exploration of Mars and other planetary bodies has

been a priority for the current frontier of space exploration.
To date, unmanned missions have required known height
maps to preselect landing areas — for example, with the
Perseverance rover, the Mars Reconaissance Orbiter was
used to determine Martian topology, which was then hand-
selected for landing regions of interest. To autonomously
choose landing areas for planetary bodies with unknown
topology, however, a more automated process is required.

Stereo imagery, synthetic aperture radar (SAR), and Li-
DAR have been popular methods to analyze planetary sur-

faces from space. However, these methods often involve
a higher SWaP (size, weight, and power) because stereo
imaging involves multiple cameras (or longer timescales),
and SAR and LiDAR involve more expensive instruments
with higher power requirements. Therefore, a depth-
estimation method using solely one camera would reduce
not only SWaP but also cost, making this approach useful
for real-time terrain estimation when other methods are in-
feasible.

2. Related Work

2.1. Classification vs Regression

As Mou and Zhu [4] note, terrain height estimation from
monocular imagery is a relatively underexplored capability
within the remote sensing community. Previous work on
height estimation from satellite or aerial imagery has taken
one of two broad approaches: height estimation is either
treated as a continuous regression problem, as in Mou and
Zhu [4], or height intervals are discretized into different
classes and height estimation is treated as a classification
problem, as in Li et al. [3]. Some approaches have used
both methods simultaneously, as in Srivastava et al. [6].

In our model, we used regression to create a continu-
ous rather than discretized output height map. This contin-
uous output is useful for Mars remote sensing, particularly
when finding potential landing sites, as the depth ambiguity
in height discretization can be dangerous for a rover or other
space instruments. Furthermore, classification is more ap-
plicable to (and, in literature, was used more frequently for)
manmade features such as buildings and other structures,
where discretized height makes more sense — e.g., one may
be interested in determining whether a section of the image
is a “tall building”, “short building”, or “no building”. For
non-manmade features, which are more continuous in na-
ture, the classification approach is less suitable.

A downside of performing regression is that it poses a
more difficult technical problem, particularly since 6.819
centered on classification networks. Taking inspiration
from the successful implementation of a regression ap-
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proach in Mou and Zhu [4] and Chen et al. [1], however,
we decided to take the more ambitious path, especially as it
is more suitable for the problem at hand.

A regression-based approach specifically for Martian ter-
rain has been successfully implemented before by Chen et
al. [1], who note the particularly strong challenge that Mar-
tian terrain estimation poses compared to other planetary
bodies (such as the Earth or moon) due to instrumenta-
tion noise, difficult-to-characterize atmospheric affects, and
Mars’ surface albedo fluctuations (i.e., highly variational
soil reflectivity). To counter these specific challenges, they
split their approach into two subnetworks. The first net-
work focused solely on calibrating the input images by per-
forming denoising, correcting the surface albedo variations
across the image, and re-illuminating the scene with a con-
sistent illumination angle. The second network was a CNN
which solely performed the depth estimation task.

For our method, we made an intentional decision to
not take the two-network approach as in Chen et al. [1].
Their method relied on the Mars Express dataset rather than
the Mars Reconaissance Orbiter (MRO) HiRISE dataset.
Mars Express was launched several years prior to the MRO,
and in comparison, the MRO uses highly exquisite and
well-calibrated instrumentation (it is the largest and most
high-resolution imaging system ever operated outside of
Earth orbit). Images from HiRISE are also extensively pre-
calibrated by the NASA JPL science team prior to public
release — although they are not re-illuminated with a con-
sistent illumination angle — whereas the public Mars Ex-
press dataset has relatively minimal calibration. As a re-
sult of this higher level of calibration and lower noise over-
all, we believed it possible to successfully execute a single-
network approach. This choice also brought the problem
within the scope of a course project, as either of the sub-
networks would comprise an entire project on their own.
The ramifications of this shortcut we took ended up being
quite significant, and are discussed in detail in Section 3.5.1.

2.2. Loss Function

Eigen et al. [2] developed a new error metric for depth
perception, citing that a scene’s global scale was not only a
fundamental ambiguity but also a large contributor to cur-
rent depth perception errors. Compared to RMSE (as used
in most other approaches), scale invariant error had a 20%
better performance due to its ability to gauge the relative
difference between corresponding points without regarding
differences in global scale. As global scale was indeed vari-
able in our dataset (the pictures were often taken at different
heights above Mars’ terrain), we opted to use scale-invariant
error to improve performance. For the mathematical defini-
tions of scale invariant error, refer to 3.4.1.

3. Method

3.1. Data Acquisition

We developed and utilized a web-scraper to extract rele-
vant stereo pairs and terrain maps from the HiRISE website1

and converted the various formats to tensors. As the dataset
is ∼250 GB, we started an AWS instance to download and
store the data in a S3 bucket for later use. That way, the data
are accessible across multiple instances.

This dataset is not perfect in its height predictions, gener-
ally having root-mean-square errors on the order of a frac-
tion of a meter to several meters depending on the exact
terrain map. This places a negligible bound on expected
model performance, but in general the dataset is highly ac-
curate however and certainly sufficient for use in training
such a model.

Figure 1. An example HiRISE image and its corresponding altime-
try map. False color shows terrain height.

3.1.1 Downselecting Data Formats

We determined how we will select our training data from
the available data formats, listed in Table 1. While diver-
sity in the training data formats is beneficial for training,
some formats must be consistent: to ensure a consistent el-
evation definition across the data set, we used only areoid
rather than radial elevation. Similarly, we downselected
from color images to monochromatic images because (a) a
model cannot easily simultaneously handle several-channel
and single-channel inputs, (b) 90% of the dataset was given
in the red channel, and (c) soil albedo — which we desired
to keep as consistent as possible — highly depends on im-
age wavelength.

1HiRISE PDS, https://hirise-pds.lpl.arizona.edu/PDS/
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Format Category Available Types
Color Color (IR, red, blue), Mono (red)
Pixel resolution 0.25m, 0.5m, 1.0m, 2.0m
Map projection Equirectangular, Polar Stereographic
Elevation Profile Areoid, Radial

Table 1. Available data formats within the HiRISE data set.

3.2. Data Augmentation

As HiRISE images are often thousands of pixels wide,
we originally cropped the images and targets to square
patches that were 256 pixels wide to reduce memory us-
age and computation time. However, we found that crop-
ping small patches proved detrimental to the model’s perfor-
mance because the model was not provided enough overall
spatial context to determine depths.

Figure 2. An example of the affects of randomly cropping an im-
age. The camera image is in the first column, and the target altime-
try the second. The first and second row were randomly cropped
with patches 256 pixels and 1024 pixels wide, respectively. The
larger cropping provides more terrain context (i.e. it is apparent
there is a crater). In the smaller cropping, though, it is difficult to
sense the large crater.

To provide more terrain information, we cropped the
images and targets into random 1024-wide patches, then
downsampling them by 4 times to produce an image-target
pair that was 256 pixels wide. By doing so, we provide
more terrain context while still maintaining a reduced com-
putation time.

3.2.1 Normalizing the Height Maps

The HiRISE height maps are given in areoid elevation, and
therefore specify not the height with respect to the mean of
a particular image, but rather the absolute height relative to
the Mars areoid (essentially, the equivalent of Earth’s mean
sea level). We did not expect our model to be able to learn
the absolute height of the image, however, as that would re-
quire being able to identify the overall region of Mars which
the individual image belongs to. Therefore, we normalized
the height map of the cropped images to have a mean of 0 by
subtracting the height mean from every pixel in the image.
In order to enable the model to distinguish relatively flat ter-
rain from hilly terrain, no other scaling normalization was
performed, i.e., the difference between the minimum and
maximum height in each image was not altered in any way.

3.2.2 Dealing with NaNs

The HiRISE dataset assigns the value −3.38E38 as a place-
holder for invalid and nonexistent data. Because of this as-
signment, the losses and gradients quickly exploded dur-
ing training. We initially set all occurrences of −3.38E38
to 0 to counter this phenomenon, following Chen et al.’s
method [1]. However, this approach produced artifacts
along the edges of the model’s layers, as the model quickly
learned that the value 0 most likely occurred along image
boundaries.

Figure 3. An example of an a HiRISE altimetry image with miss-
ing data, shown in white.

Therefore, we opted to randomly crop the images and
targets, only continuing the augmentation process (down-
sampling, random horizontal and vertical flips) until no ex-
tracted pixel value was −3.38E38. The median number of
random crops for each image to produce a usable sample
was 1, and the mean was 1.3, suggesting that overall this
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approach only excluded a small portion of the dataset for
use in training.

3.3. Our Model

We started with an encoder-decoder structure, where the
encoder’s backbone was a Resnet50. As discussed in Office
Hours, Resnet50 was likely not the best model to use for
pixel-wise regression as it cannot retain high-resolution in-
formation for the image. Therefore, we changed our model
to a Unet to perform pixel-wise regression.

Figure 4. Our UNet Model. The input and output size was
8x1x256x256, where the training batch size was 8. Adapted from
Schmidt [5].

We chose a UNet because of its use in remote sensing
for semantic segmentation and its encoder-decoder struc-
ture. As it is able to extract features while retaining spatial
information, UNet was an appropriate choice for pixel-wise
regression. To convert the UNet from a classification to a
regression name, we did not use a SoftMax layer tradition-
ally used after the UNet.

3.4. Training

We randomly assigned image-target pairs into one of
training, validation, and test datasets. The training set com-
prised 80% of the images, validation 10%, and test 10%.

3.4.1 Loss and Optimizer

For training, we used SGD (learning rate as 1E-7) with
scale-invariant MSE as our loss function [2]:

DL2(y, y
∗) =

1

n

n∑
i=1

(log yi − log y∗i )
2 (1)

DSI(y, y
∗) =

1

n

n∑
i=1

(log yi − log y∗i + α(y, y∗))2 (2)

with α(y, y∗) =
1

n

n∑
i=1

(log yi − log y∗i )

Thus, our combined loss function J is defined as follows:

J = λDL2(y, y
∗) + (1− λ)DSI(y, y

∗) (3)

In this function, λ = 0.5, as it was found by Eigen et al.
that this value produced accurate prediction and improved
the qualitative result [2]. By using this loss function, we
account for global scale ambiguities between the model out-
put and the target. Not accounting for scale ambiguities can
be detrimental to performance because small objects close
to the camera can appear identical to larger objects that are
further away. In this situation, the model will have diffi-
culty determining if a given feature is shallow or deep. In
our loss function, α(y, y∗) calculates the average scale dif-
ference between the two images, in effect “converting” the
images to a common scale and comparing corresponding
pixels’ depths relative to their respective images.

3.5. Evaluation

Overall Performance

Figure 5. The training (orange) and validation (blue) loss curves of
our model using standard invariant error. The training error fluc-
tuated a lot due to the smaller batch size. Having a larger batch
size would mitigate this problem, but we encountered memory is-
sues with larger batch sizes. The model appears to perform best at
epoch 5 and overfit afterwards.

As shown in Figure 5, the performance of our model left
much to be desired. Unfortunately, the log validation loss
was approximately 1.25 at best.

The model was unable to discern large, overall features,
mainly only able to detect depth changes when there was a
high intensity gradient.
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Figure 6. An example model output and target for a ridge on Mars,
shown on the first row. The horizontal and vertical slices are along
the middle of their respective axes.

As shown in the figure above, the model output (in or-
ange) appears to poorly match the ground truth, instead pre-
dicting a relatively flat terrain regardless of input.

However, we trained this model with scale invariant er-
ror, as mentioned in Section 3.4.1. Therefore, a more infor-
mative comparison between the model output and ground
truth should also be blind to global scale. In the figure be-
low, the predicted height map is rescaled to better compare
it to the truth height map. Since the model output was rather
noisy, especially after being rescaled, a moving average was
also taken across 20 pixels.

Figure 7. The output and target for the same ridge on Mars as
Figure 6, only with different scales.

As shown in Figure 7, the model was able to detect a
sharp change in elevation around the ground truth peak in
the horizontal slice, albeit detecting the peak later than it
actually occurs. This behavior is likely due to the sharp
gradient in the input image in 6, where a line in the middle
of the peak (likely due to different sediment compositions)
occurs.

In the vertical slice, the model performed less well. Al-
though the prediction did show an increase in elevation, the
high fluctuation, “mini” peaks, and abrupt changes do not
reflect the ground truth trend well. Like in the horizon-
tal case, this behavior is likely due to ambiguous lighting

and varying sediment colors, which are discussed in section
3.5.1.

Figure 8. An example model output for a valley in Arabia Terra.
The model output is rather noisy, and is essentially flat compared
to the actual terrain.

As before, the height map is rescaled and smoothened
to produce the plot below, which shows a different compar-
ison between the model’s output and ground truth for this
particular image.

Figure 9. The rescaled output compared to ground truth height.
The height maps begin to vaguely match; the predicted height
drops at/near the valley floor, and rises at the edges of the val-
ley. Although we did not hunt for better-than-average examples
of model performance to present here, it is worthy to note this is
perhaps the best performance we saw across all viewed examples.

This particular example shows in 9 displays well that the
model is on the right track to performing reasonable ter-
rain prediction, despite that it has a long ways to go. The
model is able to recognize the presence of a valley within
the image, and also displays correctly a rise in height at the
plateaus surrounding the valley. It is important to emphasize
that this success should be taken with a healthy amount of
skepticism, since many other model outputs did not achieve
even this low level of performance.

Within the next few image sets, note that for brevity, only
the rescaled height maps are shown along with the image
sets.
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Figure 10. An example model output for a region with gently slop-
ing terrain (a subsection of the Roddy Crater in Arabia Terra).
Since the model already outputs mostly-flat predictions, the pre-
diction matches ground truth somewhat well. This example dis-
plays one of the model’s better prediction successes.

Figure 11. Model performance on a large crater just south of Ely-
sium Planitia. The model makes a prediction about the crater
height, but the wrong one: it believes it to be a mound rather than
a depression. This behavior is expected if the model thought the
scene was lit from the bottom right of the image rather than the
top left, as it actually is. Similarly, for the horizontal image slice,
it predicts a crater rather than a mound, which further evidences
the hypothesis that it made a faulty prediction about illumination
angle.

Since this model was built with the intent of being usable
for exploration of unknown bodies, Figure 12 shows model
performance on a sample moon image, since the model has
never previously been shown lunar terrain during training.
The truth height for this image is not known (this image
was taken by an author of this paper years ago), but never-
theless, model performance can be evaluated qualitatively.

The model performs about as poorly as it did on Martian
images, but perhaps no worse, either. It successfully picks
up on small hills within the center of craters. It mistakes
two small craters for a hills on the left and bottom of the
image, and generally does not pick up well on large-scale
image features such as the two large craters.

Figure 12. The model’s output on a sample lunar image with an
undetermined height map.

3.5.1 Lighting and Sediment Composition

As light is instrumental for depth perception, a confusing
or ambiguous lighting can prove detrimental for prediction
performance. This performance effect appears to be ap-
plicable to our model in our investigation; the model fre-
quently predicted actual height drops as height increases
and vice-versa. We expected to be able to rely on the low
noise and high level of calibration of the HiRISE dataset to
alleviate lighting-related issues, but this expectation proved
ill-judged: although the dataset is highly calibrated with
regards to instrumentation noise and Mars atmospheric af-
fects, affects from surface composition and different illumi-
nation angles are still strongly present within the data.

Figure 13. A cliff on Mars, where the HiRISE image (for red color)
is on the left, and the altimetry on the right. The intensities in
the input image makes depth perception difficult–the image may
appear to be a ridge, but is actually a cliff where the darker left
side has less intensely red sediment.

As shown in Figure 13, the lighting in these aerial images
make perceived depth ambiguous. Much of related depth
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estimation work used day-to-day images on Earth, where
shadows were highly indicative of both shape and depth.
However, as the HiRISE images were taken in varying times
of Mars day, shadows (or the lack thereof) can make shapes
ambiguous. For instance, if a picture were taken when the
Sun were angled away from the imaged site, then shadows
would be useful in determining depth. However, if the Sun
were directly overhead, most (if not all) shadows would dis-
appear, leaving the terrain highly illuminated but with little
context for depth perception. Even more critical is that if the
illumination angle is in the opposite direction, the meaning
of shadows and bright regions are flipped; i.e., a shadow
in one illumination angle may correspond a drop in terrain
height in a certain direction, whereas a shadow in the op-
posite angle would instead correspond to a rise in terrain
height.

Another ambiguity comes from sediment composition.
Our input images measured only the red intensity, which,
for the red planet Mars, seemed to be an appropriate choice.
(We also chose to only use the red data because other wave-
lengths’ data were not as prevalent.) However, due to vari-
ations in composition, the intensity of red in the sediment
can vary. For instance, less red areas may appear darker
in the image, and more red ones appear lighter. In the first
case, the model may predict the terrain to be deeper than
anticipated, while in the second case, it may predict it to be
shallower.

4. Conclusion
Overall, our method did not perform as well as we hoped.

Instead of predicting terrain heights, it generally predicted
relatively flat yet noisy terrain, only detecting smaller fea-
tures (such as small craters or hills) if they had a sharp
luminosity gradient in the input image. When looking at
rescaled and smoothed height predictions, it is clear that the
model is taking correct initial steps towards accurate terrain
prediction, but still has a long way to go. In some select
cases, it was able to detect valleys and ridges and, in a low-
accurate and noisy manner, associate those features with
a meaningful height prediction. Where the model fails, it
does sometimes fail in meaningful ways, such as mistak-
ing craters for mounds (likely because it believes the scene
illumination angle is opposite from the actual angle).

Unlike Chen et al. [1]’s approach, we did not use a dual-
network approach to separately re-illuminate / calibrate im-
ages and then perform height regression, instead aiming to
have the UNet itself implicitly determine (and account for)
illumination angle and surface albedo variations. In the
end, this approach did not succeed: it was apparent that
our model frequently mispredicted height drops as height
increases and vice-versa, which would have been resolved
via image re-illumination. In hindsight, we believe this was
likely a primary cause behind the failure of our model.

Beyond moving to a dual-network approach to unify il-
lumination angles and albedo variations across the dataset,
there are further ideas on how to make the model functional.
One way the model could be improved is to use an ensemble
approach, where one model detects large, overall features
(such as valleys, cliffs, or large craters), and another detects
smaller ones (such as small ridges, holes, and bumps). This
can be achieved by using identical models (such as a UNet,
CNN, etc.), where one takes random small patches of the
images as input and the other uses a downsampled version
of the entire image. The results from both models can be
combined, either by pure addition or by a weighted aver-
age, to produce a terrain depth map.

5. Individual Contribution
Within the technical side of this project I primarily man-

aged the data-wrangling component (reading HiRISE doc-
umentation, determining how to load NASA-specific image
formats, reading about the dataset limitations and formats,
figuring out what selection of the dataset to download, han-
dling the AWS S3 bucket) and data analysis (looking at
model outputs, analyzing individual layer activation, com-
ing up with new ways to visualize model performance such
as taking height “slices” of the image). Both of us trained
various (and many!) models. Just like the project itself, the
report was also highly collaborative — we each essentially
worked on all the sections. If any, the ones I would take ‘pri-
mary’ credit for are the related work section and generating
images/plots for evaluation, although I also wrote content
for the abstract, intro, dataset usage, evaluation, and con-
clusion.
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